ACTA CHIMICA SINICA

石墨烯包裹 Cu₂₊₁O/Cu 复合材料的制备及其储锂性能

田雷雷^{*a,b*} 魏贤勇^{*,a} 庄全超^{*,b} 宗志敏^{*a*} 孔

孙世刚^c

(^a中国矿业大学化工学院 徐州 221116) (^b中国矿业大学材料科学与工程学院 徐州 221116) (^c固体表面物理化学国家重点实验室 厦门大学化学化工学院化学系 厦门 361005)

摘要 半导体的能级结构和金属-半导体异质结的结构及性质对金属-半导体复合材料的导电性能具有重要影响.优化 半导体相的能级结构和金属-半导体接触界面的势垒是增强金属-半导体型复合电极材料导电能力,提高复合电极材料 储锂性能的重要途径.采用水热反应-原位热还原法制备石墨烯包覆 Cu₂₊₁O/Cu 复合材料.根据 SEM 和 XRD 研究结果, Cu₂₊₁O(金属过剩型 Cu₂O)和 Cu 复合体被均匀包裹在柔性石墨烯层中.充放电结果表明,石墨烯包裹 Cu₂₊₁O/Cu 复合材 料电极具有较高的充放电容量和优异的循环性能,50 mA•g⁻¹充放电的首周充电和放电比容量分别为 773 和 438 mA•h• g⁻¹,60 周的容量保持率为 84%;同时也具有很好的倍率性能,表明石墨烯包裹 Cu₂₊₁O/Cu 复合材料具有良好的金属-半 导体异质结界面的结构和优异的导电性能.

关键词 石墨烯; 氧化亚铜; 半导体; 异质结; 锂离子电池; 电子输运

Fabrication and Lithium-Storage Performances of Graphene-Wrapped Cu₂₊₁O/Cu Composites

Tian, Leilei^{a,b}Wei, Xianyong*.aZhuang, Quanchao*.bZong, ZhiminaSun, Shigangc(a School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116)(b School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221116)(c State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005)

Abstract Materials with hybrid metal-semiconductor nanostructures, such as graphene-metal oxides and carbon nanotube-metal oxides, have been intensively exploited as electrode material for lithium ion batteries in recent years. It was found that the structures and properties of the metal-semiconductor herterojunction and the energy level structures of the semiconductor are essential for the conductance of the metal-semiconductor composite. It is thence believed that the conductance, and thus the lithium-storage performance, of the metal-semiconductor composite can be improved by tuning the structures of the metal-semiconductor herterojunction and the energy level structures of the semiconductor. Metal excess defects can occured in metal oxide crystals due to the anions are absent from their lattice sites or the presence of extra cations at interstitial sites. In the metal excess type metal oxide, the electric transport is mainly by "excess" electrons which are present for maintaining the electrical neutrality, and thus possesses a higher conductance. In this work, graphene-wrapped $Cu_{2+1}O/Cu$ composites were successfully fabricated by using a hydrothermal reaction followed by an in situ thermal reduction. The structures, surface morphologies and the lithium-storage performances of the obtained materials were characterized and investigated by scanning electron microscopy, X-ray diffraction and galvanostatic discharge-charge techniques. In the obtained hybrid material, highly-crystallized $Cu_{2+1}O$ (Cu₂O with metal excess defects) successfully formed during the heat treatment processes, Cu₂₊₁O and Cu particles were homogeneously wrapped by flexible graphene sheets with a well defined core-shell structure. Constant current charge-discharge results showed that graphene-wrapped $Cu_{2+1}O/Cu$ composite had a higher reversible capacity and excellent cycling stability, delivered a higher initial charge-discharge capacity of 773 and 438 mA•h•g⁻¹ at 50 mA•g⁻¹ and superb cycling performance of 368 mA•h•g⁻¹ after 60 cycles, as well as a favorable rate capabilities and high rate cycling performances, indicating the high conductance and the optimized herterojunctions were achieved by the simultaneously introduction of metal excess defects, metallic copper and graphene in graphene-wrapped $Cu_{2+1}O/Cu$ composites. Keywords graphene; cuprous oxide; semiconductor; heterojunction; lithium ion batteries; electron transport

* E-mail: zhuangquanchao@126.com; Tel.: 13605215324; wei_xianyong@163.com Received March 17, 2013; published July 19, 2013.

Acta Chim. Sinica 2013, 71, 1270-1274

Project supported by the Fund from Natural Science Foundation of China for Innovative Research Group (Grant 51221462), the Jiangsu Ordinary University Graduate Innovative Research Programs (No. CXZZ12_0943) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. 项目受国家自然科学基金创新研究群体科学基金(No. 51221462), 江苏省研究生培养创新工程(No. CXZZ12_0943)和江苏高校优势学科建设工程资助.

1 引言

目前,移动电子设备和新能源汽车的迅猛发展对锂 离子电池的能量密度和功率密度提出了更高的要求. 传 统的石墨类材料作为负极由于其理论容量较低,已成为 制约锂离子电池进一步发展的重要瓶颈. 开发同时具备 高容量、倍率性能和循环稳定性的电极材料已是当务之 急,也是研究的热点和难点^[1]. 2000 年 Tarascon 课题 组^[2]报道了基于可逆转化机制的过渡金属氧化物如 MnO₂, Fe_xO_y, Cr₂O₃, Co₃O₄, MnO 和 Cu_xO 等作为锂离子 电池负极材料,这类材料通常具有较高的可逆容量,为 新型高性能电极材料的开发拓展了视野.

铜的氧化物($Cu_xO, x = 1, 2$)作为锂离子电池负极材 料具有较高的理论容量和良好的安全性能、同时具有原 料丰富,价格低廉和环境友好等优点,受到高度关 注^[3~12]. 其中, Cu₂O 还具有较高的催化活性, 在气体传 感, CO催化氧化, 太阳能转换和抗菌杀菌等诸多领域也 有着广阔的应用前景^[13~23]. 但是, 由于 Cu₂O 是一种典 型的 p 型半导体, 电子导电能力较差, 致使电极反应的 可逆性较差、充放电循环中容量衰减较快、同时还存在 严重的电压滞后现象、使其充放电能量效率较低;另一 方面, 与其他过渡金属氧化物相类似, Cu₂O 电极在充放 电循环过程中同样存在较大的体积变化、这一方面造成 电极材料活性颗粒失去良好的接触而致使电极破碎和 粉化: 还会引起电极表面固体电解质相界面膜(SEI 膜) 破裂、失去对电极的保护、导致其容量迅速衰减、以往 的研究多集中于 Cu₂O 的形貌控制合成^[19-22], 或将其直 接与碳基材料复合、以提高其电化学储锂容量和循环性 能^[7,11~13]. 在前期的研究工作中,我们^[24~27]发现在活性 材料与导电相形成的复合材料电极中、电子通过活性材 料与导电相之间异质结界面的过程是电子输运的关键 步骤、异质结界面的性质和结构对复合材料的电子输运 过程具有重要影响.因此,调控复合材料中半导体相的 能级结构和金属-半导体接触界面的势垒是提高金属-半导体复合材料导电性能的关键.

本工作中采用水热-原位热还原法合成了石墨烯包 裹 Cu₂₊₁O/Cu 金属-半导体复合材料, 通过改变 Cu₂O 的 元素化学计量比, 引入金属过剩型点缺陷, 调控 Cu₂O 的能级结构, 引入 Cu 和石墨烯导电相, 改善复合材料 的异质结界面结构, 优化复合材料的电子输运过程, 提 高导电性能; 另一方面, 利用石墨烯的柔性包覆作用, 缓冲 Cu₂O 电极在充放电循环过程中的体积变化, 降低 Cu₂O 活性材料与电解液的接触面积, 减少其表面 SEI 膜的形成, 从而改善Cu₂O 的电化学储锂性能.

2 结果与讨论

石墨烯包裹 Cu₂₊₁O/Cu 复合材料的结构形貌 如图 1 所示, Cu₂₊₁O/Cu 颗粒具有良好的结晶状态,

石墨烯层呈二维褶皱状分布,将 Cu₂₊₁O/Cu 颗粒完整地 包裹在石墨烯层中. EDX 元素面扫描(图 2)分析结果表 明, Cu 和 O 元素都非常均匀地分布在石墨烯中,进一步 说明 Cu₂₊₁O 和 Cu 被很均匀地分散包裹在石墨烯片层 间.

图 1 石墨烯包裹 Cu₂₊₁O/Cu 复合材料的 SEM 图 Figure 1 Representative SEM images of graphene-wrapped Cu₂₊₁O/Cu composites

图 3 中在 2θ 角等于 36° , 42° 和 61° 附近出现了一组 特征衍射峰, 依次与赤铜矿结构 Cu₂₊₁O 的(111), (200) 和(220)晶面(JCPDS No. 05-0667)很好地吻合,显示复合 材料中 Cu₂₊₁O 组元具有很好的结晶形态^[30]. 在 2θ 角等 于 43° , 50° 和 74° 附近出现的另一组特征衍射峰, 分别与 Cu 的 (111), (200) 和 (220) 晶 面 相 对 应 (JCPDS No. 04-0836),显示了复合材料中 Cu 组元的存在. 对比 Cu 和 Cu₂₊₁O 两组元的衍射峰可以发现,二者的特征峰的 高度相当,即两组元均具有良好的结晶性,但 Cu 组元 的衍射峰面积相对较小,表明了复合材料中仅有少量 Cu,根据相对强度算得复合材料中 Cu 的含量约为 22%. 此外,在 2θ 角等于 26° 附近的宽而矮小的衍射峰,则为 石墨烯材料的特征谱峰,与石墨材料的(002)晶面相对 应^[27,28].因此所制备的材料为 Cu₂₊₁O, Cu 和石墨烯的复 合材料.

2.2 石墨烯包裹 Cu₂₊₁O/Cu 复合材料的电化学储锂性 能

如图 4 和图 5 所示,石墨烯包裹 $Cu_{2+1}O/Cu$ 复合材 料在 0.01 ~ 3.0 V 电压范围内 50 mA•g⁻¹电流密度下具 有较高的充放电容量,首周充电和放电容量分别为 773 和 438 mA•h•g⁻¹,库伦效率为 56.7%,首周可逆容量略 低于未经石墨烯包裹复合的 Cu_2O 材料(460 mA•h•g⁻¹)^[11].

Acta Chim. Sinica 2013, 71, 1270-1274

图 2 石墨烯包裹 Cu₂₊₁O/Cu 复合材料的 EDX 面扫描结果 Figure 2 SEM-EDX elemental mapping images of graphene-wrapped Cu₂₊₁O/Cu composites (a) SEM image; (b) C-K; (c) Cu-KA; and (d) O-K

图 3 石墨烯包裹 $Cu_{2+1}O/Cu$ 复合材料的 XRD 图谱

Figure 3 XRD patterns of graphene-wrapped $Cu_{2+1}O/Cu$ composites (a) Composite materials; (b) $Cu_{2+1}O$, JCPDS No. 05-0667; (c) Cu, JCPDS No. 04-0836

Figure 4 Charge/discharge profiles (a) for the 1st, 2nd and 60th cycle for graphene-wrapped $Cu_{2+1}O/Cu$ electrode at a current density of 50 mA•g⁻¹ over the voltage range 0.01 ~ 3.0 V vs. Li/Li⁺ and the corresponding differential capacity versus voltage plots (b) The specific capacities are based on the mass of $Cu_{2+1}O$ and graphene in the

graphene-wrapped $Cu_{2+1}O/Cu$ composites

石墨烯包裹 $Cu_{2+1}O/Cu$ 复合材料的充放电曲线和其相应 的微分容量曲线显示,首次充电过程中在 1.25 V 附近有 一个显著的放电平台,并且在随后的循环中升高到 1.7 V 左右,与 Cu_2O 还原产生 Cu 和 Li_2O 的过程相对应,放 电过程中 2.4 V 附近的电流峰,则对应 Cu 和 Li_2O 反应 重新生成 Cu_2O 的过程^[8-12].首次充电微分容量曲线 0.7 和 0.45 V 出现两个电流峰,并且在随后的循环过程中消

研究论文

1272 http://sioc-journal.cn

© 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

Acta Chim. Sinica 2013, 71, 1270-1274

失, 对应石墨烯表面 SEI 膜的成膜过程^[28,31]. 在随后的 充放电循环过程中, 石墨烯包裹 Cu₂₊₁O/Cu 复合材料电 极的平均库伦效率(从第 2 周算起)为 99.1%, 显示了储 锂反应具有高度的可逆性, 表明 Cu₂O 表面包裹的石墨 烯和石墨烯表面的 SEI 膜具有很好的钝化保护效果, 有 效地阻止了放电过程中副反应的发生. 第 60 周的可逆 容量为 368 mA•h•g⁻¹, 容量保持率达到 84%, 远高于未 经石墨烯包裹复合的 Cu₂O 材料^[11], 表明 Cu₂₊₁O 表面包 裹的柔性石墨烯增强了电极材料的结构稳定性, 有效地 缓解了电化学循环过程中材料体积变化引起电极材料 破碎和粉化的现象; 此外, Cu 和石墨烯的同时引入提高 了复合材料的导电性, 进而增强了电化学储锂反应的可 逆性和循环稳定性.

图 5 石墨烯包裹 Cu₂₊₁O/Cu 复合电极在 50 mA•g⁻¹电流密度下的循 环性能曲线

Figure 5 Cyclic performances of graphene-wrapped Cu₂₊₁O/Cu electrode at a current density of 50 mA•g⁻¹ over the voltage range 0.01 ~ 3.0 V vs. Li/Li⁺

如图 6 所示, 当充放电电流密度依次变化为 30, 60, 120, 300, 600, 1200 和 1500 mA•g⁻¹时, 复合材料电极的 可逆容量分别对应为 450, 418, 280, 170, 103, 48 和 38 mA•h•g⁻¹, 电流密度再次降低至 30 mA•g⁻¹时, 复合材 料的可逆容量又重新恢复, 第 85 周的可逆容量为 398 mA•h•g⁻¹, 表明石墨烯包裹 $Cu_{2+1}O/Cu$ 复合材料电极具 有良好的倍率性能, 并且在经历较大电流密度下充放电 循环后, 仍能保持很好的结构稳定性和较高的储锂容 量, 进一步显示了 $Cu_{2+1}O$ 表面包裹柔性石墨烯对复合 材料结构的优化作用.

2.3 石墨烯包裹 Cu₂₊₁O/Cu 复合材料的导电机理探讨

水热反应获得的石墨烯包裹 CuO 复合材料在氮气 氛围灼烧处理时,石墨烯表面残余的含氧基团在缺氧条 件下反应产生 CO,与复合材料中 CuO 组元发生原位还 原反应,生成 Cu₂O.

 $2CuO + CO \rightarrow Cu_{2}O + CO_{2} \tag{1}$

Cu₂O 继续在 CO 氛围焙烧时, 少量的 Cu₂O 被 CO

Acta Chim. Sinica 2013, 71, 1270-1274

© 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

图 6 石墨烯包裹 Cu₂₊₁O/Cu 复合电极不同电流密度下的倍率性能曲 线

Figure 6 Rate capabilities and high rate cycling performances of graphene-wrapped $Cu_{2+1}O/Cu$ electrode at various current densities

彻底还原成为金属 Cu^[19].

$$Cu_2O+CO \rightarrow 2Cu+CO_2 \tag{2}$$

由于 CO 量不足, 部分 Cu₂O 晶格内的 O²⁻离子以和 CO 反应生成 CO₂ 的形式逸出, 导致 Cu_i⁺离子过剩, 形 成间隙离子缺陷, 表示为 Cu₂₊₁O. 过剩的 Cu_i⁺离子位于 晶格间隙中时, 在其附近必然存在一个 O²⁻离子空位以 保持静电平衡, O²⁻离子空位相当于一个带正电荷的中 心, 能束缚电子. 被束缚的电子处在 O²⁻离子空位上, 为最邻近的 Cu⁺所共有, 它的能级距导带很近, 当受激 发时, 该电子可跃迁到导带中去, 因而具有电子导电能 力, 形成 n 型半导体. Cu_i⁺离子过剩型缺陷形成的过程 可用(3)或(4)式表示.

$$Cu_{2}O + CO \rightarrow 2Cu_{1}^{+} + 2e^{-} + CO_{2}$$

$$3Cu_2O + CO \rightarrow 2Cu_{2+1}O + CO_2 \tag{4}$$

另一方面, Cu₂O 颗粒中夹杂的金属相 Cu 也可以提 高纳米颗粒的电子导电性^[8]; 包裹在颗粒外面的柔性石 墨烯层可以缓冲电化学循环过程中 Cu₂O 的相变体积变 化, 在 Cu₂O 颗粒与集流体之间形成良好的电子和离子 输运通道^[11,32], 从而提高了复合材料的导电能力, 使其 获得了优异的电化学循环性能和大倍率充放电性能.

3 结论

采用水热反应-原位热还原法制备石墨烯包覆 Cu₂₊₁O/Cu 复合材料, SEM 和 XRD 研究结果表明,所制 备的材料为包裹型微纳结构,金属过剩的 n 型 Cu₂O 与 Cu 的复合体被均匀包裹在柔性石墨烯层中.充放电结 果表明,石墨烯包裹 Cu₂₊₁O/Cu 复合材料电极具有较高 的充放电容量和优异的循环性能,50 mA•g⁻¹ 充放电的 首周充电和放电容量为 773 和 438 mA•h•g⁻¹, 60 周的容 量保持率为 84%;同时也具有很好的倍率性能.本工作 为面向电化学储锂等领域的过渡金属氧化物的设计合 成和性能改进提供了新的思路,具有重要的探索和借鉴 意义;而且,所制备的复合材料在工业催化,太阳能转 换和生物传感等领域也具有很大应用潜力.

4 实验部分

4.1 石墨烯包裹 Cu₂₊₁O/Cu 复合材料的制备

采用改进的 Hummers 法制备出氧化石墨^[27-29].将 0.24 g 氧化石墨分散在 50 mL 去离子水中,用超声波处 理器(FS-600,上海生析超生仪器有限公司)振动获得含 有氧化石墨烯的混合液.向该混合液中逐滴滴入 16 mL 硫酸铜(0.8 g CuSO4•5H2O)水溶液,并快速搅拌,然后再 向其中滴入适量的氢氧化钠(NaOH)溶液,调节 pH 至 9, 之后将混合液装入 100 mL 的水热反应釜中,加热至 120

保温一定时间. 再将所得产物过滤分离, 并用去离子 水清洗 4 次, 真空冷冻干燥, 得到石墨烯包裹 CuO 复合 材料, 再将该复合材料在氮气氛围中 500 下灼烧 2 h, 随炉冷却后便得石墨烯包裹 Cu₂₊₁O/Cu 复合材料, 复合 材料中石墨烯的质量比约 30%.

4.2 结构形貌表征

采用 Bruker-D8 系列 X 射线衍射(XRD)仪(Cu Kα, $\lambda = 0.1054$ nm, 管电压 40 kV, 管电流 40 mA, 扫描步长 0.02°)和场发射扫描电子显微镜(FE-SEM, JEOL 6701F) 对石墨烯包裹 Cu₂₊₁O/Cu 复合材料的结构和表面形貌 进行表征, 并用 QUANTAX 400-10 型能谱(EDX)仪分析 所得材料的元素分布情况.

4.3 电化学性能测试

石墨烯包裹 Cu₂₊₁O/Cu 复合材料电极按 80%的复合 材料和 20%的聚偏氟乙烯(PVDF, HS910, Elf-atochem, USA)粘合剂的质量百分比组成;电解液为 1 mol•L⁻¹ LiPF₆-EC DEC DMC (1 1 1)(张家港国泰华荣化 工新材料公司). 充放电实验在 2032 型扣式电池中完成, 金属锂(天津中能锂业有限公司, 99.9%)作为对电极;隔 膜为 Celgard 2300. 在高精度电池测定仪(2XZ-2B, 深圳 新威尔电子公司)上进行恒流充放电测试,电位范围 0.01~3 V.

References

1274

http://sioc-journal.cn

[1] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

- [2] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M.
- Nature 2000, 407, 496.
 [3] Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Song, W. G.; Wan, L. J.; Guo, Y. G. Chem. Mater. 2008, 20, 3617.
- [4] Wang, B.; Wu, X. L.; Shu, C. Y.; Guo, Y. G.; Wang, C. R. J. Mater. Chem. 2010, 20, 10661.
- [5] Zhao, B.; Liu, P.; Zhuang, H.; Jiao, Z.; Fang, T.; Xu, W.; Lu, B.; Jiang, Y. J. Mater. Chem. A 2013, 1, 367.
- [6] Zhang, Z.; Chen, H.; Che, H.; Wang, Y.; Su, F. Mater. Chem. Phys. 2013, 138, 593.
- [7] Venkatachalam, S.; Zhu, H.; Masarapu, C.; Hung, K.; Liu, Z.; Suenaga, K.; Wei, B. ACS Nano 2009, 3, 2177.
- [8] Xiang, J. Y.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Zhou, Y.; Zhang, L. Electrochem. Commun. 2009, 11, 262.
- [9] Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803.
 [10] Xiang, J. Y.; Tu, J. P.; Huang, X. H.; Yang, Y. Z. J. Solid State Elec-
- trochem. 2008, 12, 941. [11] Zhang, Y.; Wang, X.; Zeng, L.; Song, S.; Liu, D. Dalton Trans. 2012, 41, 4316.
- [12] Xiang, J. Y.; Wang, X. L.; Xia, X. H.; Zhang, L.; Zhou, Y.; Shi, S. J.; Tu, J. P. Electrochim. Acta 2010, 55, 4921.
- [13] Ma, L.; Yu, Y.; Huang, W. Y.; Zhu, L. P.; Li, J. L.; Zhuang, Y. Y.; Qi, X. H. Acta Chim. Sinica 2005, 63, 1641. (马丽丽, 余颖, 黄文娅, 朱路平, 李家麟, 庄源益, 漆新华, 化学学报, 2005, 63, 1641.)
- [14] Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867.
- [15] Zhou, B.; Liu, Z. G.; Wang, H. X.; Huang, X. Q.; Sui, Y.; Wang, X. J.; Lv, Z.; Su, W. H. Acta Phys.-Chim. Sin. 2009, 25, 1841. (周波, 刘志国, 王红霞, 黄喜强, 隋郁, 王先杰, 吕喆, 苏文辉, 物理化学学报, 2009, 25, 1841.)
- [16] Xu, C.; Han, Y.; Chi, M. Prog. Chem. 2010, 22, 2290. (徐晨洪, 韩 优, 迟名扬, 化学进展, 2010, 22, 2290.)
- [17] Pang, H.; Gao, F.; Lu, Q. Chem. Commun. 2009, (9), 1076.
- [18] Feng, L.; Zhang, C.; Gao, G.; Cui, D. Nanoscale Res. Lett. 2012, 7, 276.
- [19] Wang, X.; Hanson, J. C.; Frenkel, A. I.; Kim, J. Y.; Rodriguez, J. A. J. Phys. Chem. B 2004, 108, 13667.
- [20] Xu, F.; Zha, Y.; Wang, G; Wang, Y.; Li, J. Acta Chim. Sinica 2009, 67, 957. (徐芬, 查玉平, 王国秀, 王艳, 李家麟, 化学学报, 2009, 67, 957.)
- [21] Sun, D.; Yin, P. G.; Guo, L. Acta Phys.-Chim. Sin. 2011, 27, 1543. (孙都, 殷鹏刚, 郭林, 物理化学学报, 2011, 27, 1543.)
- [22] Shang, T. M.; Guan, M. Y.; Sun, J. H.; Zhou, Q. F.; Xu, Z. Chinese J. Inorg. Chem. 2010, 26, 1294.
- [23] Jing, A. H.; Shi, X.; Dong, J.; Qian, W. P. Acta Chim. Sinica 2007, 65, 1995 (景爱华, 施萱, 董健, 钱卫平, 化学学报, 2007, 65, 1995.)
- [24] Cui, Y.; Hao, Y.; Bao, W.; Shi, Y.; Zhuang, Q.; Qiang, Y. J. Electrochem. Soc. 2013, 160, A53.
- [25] Shi, Y. L.; Shen, M. F.; Xu, S. D.; Zhuang, Q. C.; Jiang, L.; Qiang, Y. H. Solid State Ionics 2012, 222-223, 23.
- [26] Shi, Y. L.; Shen, M. F.; Xu, S. D.; Qiu, X. Y.; Jiang, L.; Zhuang, Q. C. Int. J. Electrochem. Sci. 2011, 6, 3399.
- [27] Tian, L.; Zhuang, Q.; Li, J.; Wu, C.; Shi, Y.; Sun, S. Electrochim. Acta 2012, 65, 153.
- [28] Tian, L. L.; Zhuang, Q. C.; Li, J.; Shi, Y. L.; Chen, J. P.; Lu, F.; Sun, S. G. Chin. Sci. Bull. 2011, 56, 3204.
- [29] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
 [30] Li, C. Y.; Liu, S. X.; Ma, Y. Acta Phys.-Chim. Sin. 2009, 25, 1555
- (李长玉,刘守新,马跃,物理化学学报,2009,25,1555.)
 [31] Tian, L. L.; Zhuang, Q. C.; Wang, R.; Cui, Y. L.; Fang, L.; Qiang, Y. H. Chem. J. Chin. Univ. 2010, 31, 2468 (田雷雷,庄全超,王蓉,崔永丽,方亮,强颖怀,高等学校化学学报,2010, 31, 2468.)
- [32] Zhou, W.; Zhu, J.; Cheng, C.; Liu, J.; Yang, H.; Cong, C.; Guan, C.; Jia, X.; Fan, H. J.; Yan, Q.; Li, C. M.; Yu, T. *Energy Environ. Sci.* 2011, *4*, 4954.

(Qin, X.)

Acta Chim. Sinica 2013, 71, 1270-1274

© 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences