详细内容
2022

更新时间:2022/09    

  1. Chen, L. et al. A new type of sealed rechargeable lithium-lithium oxide battery based on reversible LiO2/Li2O2 interconversion. Journal of Materials Chemistry A 10, 16570-16577, doi:10.1039/d2ta03314c (2022).

  2. image.png

  3.  Chen, L.-F. et al. Electrochemical synthesis of Tetrahexahedral Cu nanocrystals with high-index facets for efficient nitrate electroreduction. Journal of Electroanalytical Chemistry 907, doi:10.1016/j.jelechem.2022.116022 (2022).

  4. image.png


  5.  Chen, S.-X. et al. Co/Li-dual-site doping towards LiCoO2 as a high-voltage, fast-charging, and long-cycling cathode material. Journal of Materials Chemistry A 10, 5295-5304, doi:10.1039/d1ta10612k (2022).

  6. image.png

  7. Cheng, X. et al. Revealing the optimal configuration for synergy effect of metal nanoparticles and MN4 sites for oxygen reduction reaction. Nano Energy 100, doi:10.1016/j.nanoen.2022.107440 (2022).

  8. Fan, A. et al. Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction. Nano Research 15, 6961-6968, doi:10.1007/s12274-022-4210-0 (2022).

  9. image.png

  10.  Fu, F. et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications 13, doi:10.1038/s41467-022-30113-0 (2022).

  11. Han, Y. et al. Experimental and DFT studies of oxygen reduction reaction promoted by binary site Fe/Co-N-C catalyst in acid. Journal of Electroanalytical Chemistry 914, doi:10.1016/j.jelechem.2022.116322 (2022).

  12. Hu, S., Zhang, X., Gao, S., Luo, G. & Sun, S. 2,2 '-bipyridine palladium (II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochimica Acta 413, doi:10.1016/j.electacta.2022.140179 (2022).

  13.  Hu, S.-N. et al. Sulfur-modified copper synergy with nitrogen-defect sites for the electroreduction of CO2 to formate at low overpotentials. Electrochimica Acta 422, doi:10.1016/j.electacta.2022.140557 (2022).

  14. Huang, Z. et al. Insights into Electrochemical Processes of Hollow Octahedral Co3Se4@rGO for High-Rate Sodium Ion Storage. Acs Applied Materials & Interfaces 14, 37689-37698, doi:10.1021/acsami.2c07499 (2022).

  15.  Ji, R.-Y. et al. Controlled Synthesis of High-index Faceted Pt nanocatalysts Directly on Carbon Paper for Methanol Electrooxidation. Electrocatalysis 13, 747-758, doi:10.1007/s12678-022-00749-z (2022).

  16.  Li, Z. et al. Nonvolatile and Nonflammable Sulfolane-Based Electrolyte Achieving Effective and Safe Operation of the Li-O-2 Battery in Open O-2 Environment. Nano Letters 22, 815-821, doi:10.1021/acs.nanolett.1c04537

  17. Li, Z. et al. Long-Life Aqueous Zn-I-2 Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator. Nano Letters 22, 2538-2546, doi:10.1021/acs.nanolett.2c00460 (2022).

  18. Liang, X., Tian, N., Zhou, Z. & Sun, S. N, P Dual-Doped Porous Carbon Nanosheets for High-Efficiency CO2 Electroreduction. Acs Sustainable Chemistry & Engineering 10, 1880-1887, doi:10.1021/acssuschemeng.1c07601 (2022).

  19. Liu, X. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy, doi:10.1038/s41560-022-01036-3 (2022).

  20.  Lou, Y.-Y. et al. High activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination. Physical Chemistry Chemical Physics 24, 3896-3904, doi:10.1039/d1cp04975e (2022).

  21.  Lou, Y.-Y. et al. MOF-derived single site catalysts with Electron-Rich Fe-N4 sites for efficient elimination of trichloroacetamide DBP. Chemical Engineering Journal 446, doi:10.1016/j.cej.2022.137060 (2022).

  22.  Luo, G., Hu, S., Niu, D., Sun, S. & Zhang, X. Well-designed internal electric field from nano-ferroelectrics promotes formic acid oxidation on Pd. Nanoscale 14, 6007-6020, doi:10.1039/d1nr05777d (2022).

  23.  Lv, C. et al. Disposing of excessive decomposition and destructive intercalation of solvated Li+ in CNT-based flexible 3D Si anode of flexible battery. Energy Storage Materials 51, 361-371, doi:10.1016/j.ensm.2022.06.047 (2022).

  24. Peng, X. et al. Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nature Communications 13, doi:10.1038/s41467-022-32330-z (2022).

  25. Peng, X. et al. Identification of a quasi-liquid phase at solid-liquid interface. Nature Communications 13, doi:10.1038/s41467-022-31075-z (2022).

  26. Qiu, C.-Y. et al. Revealing the concentration of hydrogen peroxide in fuel cell catalyst layers by an in-operando approach. Chinese Journal of Catalysis 43, 1918-1926, doi:10.1016/s1872-2067(21)63993-1 (2022).

  27. Qu, X. et al. Boosting the ORR performance of Fe-N/C catalyst via increasing the density and modifying the electronic structure of Fe-N-X active sites. Electrochimica Acta 403, doi:10.1016/j.electacta.2021.139604 (2022).

  28. Rauf, M. et al. Highly stable N-containing polymer-based Fe/Nx/C electrocatalyst for alkaline anion exchange membrane fuel cell applications. Progress in Natural Science-Materials International 32, 27-33, doi:10.1016/j.pnsc.2021.10.016 (2022).

  29. Shi, C.-G. et al. Reducing Safety Hazards by Optimizing the Morphology of the LiNi0.5Co0.25Mn0.25O2 Cathode Material under Abuse Conditions. Acs Applied Energy Materials 5, 5256-5266, doi:10.1021/acsaem.2c00647 (2022).

  30. Shi, C.-G. et al. Investigation and Suppression of Oxygen Release by LiNi0.8Co0.1Mn0.1O2 Cathode under Overcharge Conditions. Advanced Energy Materials 12, doi:10.1002/aenm.202200569 (2022).

  31.  Song, C. et al. Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries. Journal of Materials Chemistry A 10, 16087-16094, doi:10.1039/d2ta03283j (2022).

  32.  Su, T.-T. et al. Heteroatom-rich polymers as a protective film to control lithium growth for high-performance lithium-metal batteries. Journal of Power Sources 521, doi:10.1016/j.jpowsour.2021.230949 (2022).

  33. Tang, J.-X. et al. Helical PdPtAu nanowires bounded with high-index facets selectively switch the pathway of ethanol electrooxidation. Journal of Materials Chemistry A 10, 10902-10908, doi:10.1039/d2ta01011a (2022).

  34.  Wan, L. et al. Molecular Degradation of Iron Phthalocyanine during the Oxygen Reduction Reaction in Acidic Media. Acs Catalysis, 11097-11107, doi:10.1021/acscatal.2c03216 (2022).

  35. Wang, Q. et al. Rigid and Flexible SEI Layer Formed Over a Cross-Linked Polymer for Enhanced Ultrathin Li Metal Anode Performance. Advanced Energy Materials 12, doi:10.1002/aenm.202103972 (2022).

  36.  Wang, T. et al. High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer. Journal of the American Chemical Society, doi:10.1021/jacs.2c00602 (2022).

  37. Wang, Y. et al. p-d Orbital Hybridization Induced by a Monodispersed Ga Site on a Pt3Mn Nanocatalyst Boosts Ethanol Electrooxidation. Angewandte Chemie-International Edition 61, doi:10.1002/anie.202115735 (2022).

  38.  Wang, Z.-Y. et al. Electrochemical and in situ FTIR spectroscopic studies of gentian violet as a novel leveler in through-holes metallization for printed circuit board applications. Electrochimica Acta 410, doi:10.1016/j.electacta.2022.140018 (2022).

  39.  Wen, Y. et al. Copper Substitution in P2-Type Sodium Layered Oxide To Mitigate Phase Transition and Enhance Cyclability of Sodium-Ion Batteries. Acs Applied Materials & Interfaces, doi:10.1021/acsami.2c05521 (2022).

  40. Wu, L.-N. et al. A novel high-energy-density lithium-free anode dual-ion battery and in situ revealing the interface structure evolution. Chemical Science 13, 4058-4069, doi:10.1039/d2sc00244b (2022).

  41. Wu, X. et al. Regulating the Architecture of a Solid Electrolyte Interface on a Li-Metal Anode of a Li-O-2 Battery by a Dithiobiuret Additive. Acs Materials Letters, doi:10.1021/acsmaterialslett.1c00756 (2022).

  42. Wu, X. et al. Stabilizing Li-O-2 Batteries with Multifunctional Fluorinated Graphene. Nano Letters 22, 4985-4992, doi:10.1021/acs.nanolett.2c01713 (2022).

  43. Xiao, L. et al. Efficient CO2 reduction MOFs derivatives transformation mechanism revealed by in-situ liquid phase TEM. Applied Catalysis B-Environmental 307, doi:10.1016/j.apcatb.2022.121164 (2022).

  44. Xu, H. et al. Impact of Pore Structure on Two-Electron Oxygen Reduction Reaction in Nitrogen-Doped Carbon Materials: Rotating Ring-Disk Electrode vs. Flow Cell. Chemsuschem 15, doi:10.1002/cssc.202102587 (2022).

  45. Xue, D. et al. Boron-Tethering and Regulative Electronic States Around Iridium Species for Hydrogen Evolution. Advanced Functional Materials 32, doi:10.1002/adfm.202113191 (2022).

  46. Yan, L. et al. Evolution of Cu single atom catalysts to nanoclusters during CO2 reduction to CO. Chemical Communications 58, 2488-2491, doi:10.1039/d1cc05910f (2022).

  47. Yin, S.-H. et al. Seizing gaseous Fe2+ to densify O-2-accessible Fe-N-4 sites for high-performance proton exchange membrane fuel cells. Energy & Environmental Science 15, 3033-3040, doi:10.1039/d2ee00061j (2022).

  48. Yin, Z.-W. & Sun, S.-G. Origin of Structure and Voltage Fade of High-Capacity Li-Rich Mn-Rich Cathode for Li-Ion Batteries and Its Solution. Progress in Chemistry 34, 1249-1251, doi:10.7536/pc220624 (2022).

  49. Yu, N. et al. Efficient oxygen electrocatalysts with highly-exposed Co-N-4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Research 15, 7209-7219, doi:10.1007/s12274-022-4382-7 (2022).

  50. Zhang, P.-F. et al. Li-CO2/O-2 battery operating at ultra-low overpotential and low O-2 content on Pt/CNT catalyst. Chemical Engineering Journal 448, doi:10.1016/j.cej.2022.137541 (2022).

  51. Zhang, P.-Y. et al. General Carbon-Supporting Strategy to Boost the Oxygen Reduction Activity of Zeolitic-Imidazolate-Framework-Derived Fe/N/Carbon Catalysts in Proton Exchange Membrane Fuel Cells. Acs Applied Materials & Interfaces 14, 30724-30734, doi:10.1021/acsami.2c04786 (2022).

  52. Zhang, X., Hu, S., Sun, S. & Zhang, X. Fe3C Decorated N, Fe Co-Doped Hollow Carbon Microspheres as Efficient Air Electrode Catalyst for Zinc-Air Battery. Chemistryselect 7, doi:10.1002/slct.202201503 (2022).

  53. Zhao, K.-M. et al. Insight into the Mechanism of Axial Ligands Regulating the Catalytic Activity of Fe-N-4 Sites for Oxygen Reduction Reaction. Advanced Energy Materials 12, doi:10.1002/aenm.202103588 (2022).

  54. Zheng, J.-H. et al. Tuning atomic Pt site surface on PtAu alloy toward electro-oxidation of formic acid. Materials Today Energy 27, doi:10.1016/j.mtener.2022.101028 (2022).

  55. Zhong, J.-P. et al. A superior electrocatalyst toward the oxygen reduction reaction obtained by atomically dispersing copper on N, F co-doped graphene through atomic interface engineering. Journal of Materials Chemistry A 10, 13876-13883, doi:10.1039/d2ta01990f (2022).